Abstract

 We present a simple, fast solution for reflectance acquisition using tools that fit into a pocket. Our method captures video of a flat target surface from a fixed video camera lit by a hand-held, moving, linear light source. After processing, we obtain an SVBRDF. We introduce a BRDF chart, analogous to a color "checker" chart, which arranges a set of known-BRDF reference tiles over a small card. A sequence of light responses from the chart tiles as well as from points on the target is captured and matched to reconstruct the target's appearance.

We develop a new algorithm for BRDF reconstruction which works directly on these LDR responses, without knowing the light or camera position, or acquiring HDR lighting. It compensates for spatial variation caused by the local (finite distance) camera and light position by warping responses over time to align them to a specular reference. After alignment, we find an optimal linear combination of the Lambertian and purely specular reference responses to match each target point's response. The same weights are then applied to the corresponding (known) reference BRDFs to reconstruct the target point's BRDF. We extend the basic algorithm to also recover varying surface normals by adding two spherical caps for diffuse and specular references to the BRDF chart.

We demonstrate convincing results obtained after less than 30 seconds of data capture, using commercial mobile phone cameras in a casual environment.

Files

Paper PDF (5 MB)
Video DivX Avi (55 MB)